3.603 \(\int \frac{(a+b x^2)^{3/2}}{(c x)^{5/2}} \, dx\)

Optimal. Leaf size=152 \[ \frac{4 a^{3/4} b^{3/4} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right ),\frac{1}{2}\right )}{3 c^{5/2} \sqrt{a+b x^2}}+\frac{4 b \sqrt{c x} \sqrt{a+b x^2}}{3 c^3}-\frac{2 \left (a+b x^2\right )^{3/2}}{3 c (c x)^{3/2}} \]

[Out]

(4*b*Sqrt[c*x]*Sqrt[a + b*x^2])/(3*c^3) - (2*(a + b*x^2)^(3/2))/(3*c*(c*x)^(3/2)) + (4*a^(3/4)*b^(3/4)*(Sqrt[a
] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[
c])], 1/2])/(3*c^(5/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0927667, antiderivative size = 152, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {277, 279, 329, 220} \[ \frac{4 a^{3/4} b^{3/4} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{3 c^{5/2} \sqrt{a+b x^2}}+\frac{4 b \sqrt{c x} \sqrt{a+b x^2}}{3 c^3}-\frac{2 \left (a+b x^2\right )^{3/2}}{3 c (c x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(3/2)/(c*x)^(5/2),x]

[Out]

(4*b*Sqrt[c*x]*Sqrt[a + b*x^2])/(3*c^3) - (2*(a + b*x^2)^(3/2))/(3*c*(c*x)^(3/2)) + (4*a^(3/4)*b^(3/4)*(Sqrt[a
] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[
c])], 1/2])/(3*c^(5/2)*Sqrt[a + b*x^2])

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 279

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
n*p + 1)), x] + Dist[(a*n*p)/(m + n*p + 1), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^{3/2}}{(c x)^{5/2}} \, dx &=-\frac{2 \left (a+b x^2\right )^{3/2}}{3 c (c x)^{3/2}}+\frac{(2 b) \int \frac{\sqrt{a+b x^2}}{\sqrt{c x}} \, dx}{c^2}\\ &=\frac{4 b \sqrt{c x} \sqrt{a+b x^2}}{3 c^3}-\frac{2 \left (a+b x^2\right )^{3/2}}{3 c (c x)^{3/2}}+\frac{(4 a b) \int \frac{1}{\sqrt{c x} \sqrt{a+b x^2}} \, dx}{3 c^2}\\ &=\frac{4 b \sqrt{c x} \sqrt{a+b x^2}}{3 c^3}-\frac{2 \left (a+b x^2\right )^{3/2}}{3 c (c x)^{3/2}}+\frac{(8 a b) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+\frac{b x^4}{c^2}}} \, dx,x,\sqrt{c x}\right )}{3 c^3}\\ &=\frac{4 b \sqrt{c x} \sqrt{a+b x^2}}{3 c^3}-\frac{2 \left (a+b x^2\right )^{3/2}}{3 c (c x)^{3/2}}+\frac{4 a^{3/4} b^{3/4} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{3 c^{5/2} \sqrt{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0128064, size = 57, normalized size = 0.38 \[ -\frac{2 a x \sqrt{a+b x^2} \, _2F_1\left (-\frac{3}{2},-\frac{3}{4};\frac{1}{4};-\frac{b x^2}{a}\right )}{3 (c x)^{5/2} \sqrt{\frac{b x^2}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^(3/2)/(c*x)^(5/2),x]

[Out]

(-2*a*x*Sqrt[a + b*x^2]*Hypergeometric2F1[-3/2, -3/4, 1/4, -((b*x^2)/a)])/(3*(c*x)^(5/2)*Sqrt[1 + (b*x^2)/a])

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 125, normalized size = 0.8 \begin{align*}{\frac{2}{3\,x{c}^{2}} \left ( 2\,\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticF} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ) \sqrt{-ab}xa+{b}^{2}{x}^{4}-{a}^{2} \right ){\frac{1}{\sqrt{cx}}}{\frac{1}{\sqrt{b{x}^{2}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(3/2)/(c*x)^(5/2),x)

[Out]

2/3/(b*x^2+a)^(1/2)/x*(2*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1
/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*(-a*b)^(1/2)*x*a+
b^2*x^4-a^2)/c^2/(c*x)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{\frac{3}{2}}}{\left (c x\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/(c*x)^(5/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^(3/2)/(c*x)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b x^{2} + a\right )}^{\frac{3}{2}} \sqrt{c x}}{c^{3} x^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/(c*x)^(5/2),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^(3/2)*sqrt(c*x)/(c^3*x^3), x)

________________________________________________________________________________________

Sympy [C]  time = 7.81354, size = 49, normalized size = 0.32 \begin{align*} \frac{a^{\frac{3}{2}} \Gamma \left (- \frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{3}{2}, - \frac{3}{4} \\ \frac{1}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 c^{\frac{5}{2}} x^{\frac{3}{2}} \Gamma \left (\frac{1}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(3/2)/(c*x)**(5/2),x)

[Out]

a**(3/2)*gamma(-3/4)*hyper((-3/2, -3/4), (1/4,), b*x**2*exp_polar(I*pi)/a)/(2*c**(5/2)*x**(3/2)*gamma(1/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x^{2} + a\right )}^{\frac{3}{2}}}{\left (c x\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/(c*x)^(5/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^(3/2)/(c*x)^(5/2), x)